Jacopo Sabbatini, Wojciech H. Zurek, Matthew J. Davis
The miscibility-immiscibility phase transition in binary Bose-Einstein condensates (BECs) can be controlled by a coupling between the two components. Here we propose a new scheme that uses coupling-induced pattern formation to test the Kibble-Zurek mechanism (KZM) of topological-defect formation in a quantum phase transition. For a binary BEC in a ring trap we find that the number of domains forming the pattern scales with the coupling quench rate with an exponent as predicted by the KZM. For a binary BEC in an elongated harmonic trap we find a different scaling law due to the transition being spatially inhomogeneous. We perform a "simulation" of the harmonically trapped system in a ring trap to verify the scaling exponent.
View original:
http://arxiv.org/abs/1106.5843
No comments:
Post a Comment