F. Ancilotto, L. Salasnich, F. Toigo
Motivated by a recent experiment [Phys. Rev. Lett. 106, 150401 (2011)] we simulate the collision between two clouds of cold Fermi gas at unitarity conditions by using an extended Thomas-Fermi density functional. At variance with the current interpretation of the experiments, where the role of viscosity is emphasized, we find that a quantitative agreement with the experimental observation of the dynamics of the cloud collisions is obtained within our superfluid effective hydrodynamics approach, where density variations during the collision are controlled by a purely dispersive quantum gradient term. We also suggest different initial conditions where dispersive density ripples can be detected with the available experimental spatial resolution.
View original:
http://arxiv.org/abs/1206.0568
No comments:
Post a Comment