Wednesday, December 12, 2012

1212.2418 (P. Schindler et al.)

Quantum simulation of open-system dynamical maps with trapped ions    [PDF]

P. Schindler, M. Müller, D. Nigg, J. T. Barreiro, E. A. Martinez, M. Hennrich, T. Monz, S. Diehl, P. Zoller, R. Blatt
Dynamical maps describe general transformations of the state of a physical system, and their iteration can be interpreted as generating a discrete time evolution. Prime examples include classical nonlinear systems undergoing transitions to chaos. Quantum mechanical counterparts show intriguing phenomena such as dynamical localization on the single particle level. Here we extend the concept of dynamical maps to an open-system, many-particle context: We experimentally explore the stroboscopic dynamics of a complex many-body spin model by means of a universal quantum simulator using up to five ions. In particular, we generate long-range phase coherence of spin by an iteration of purely dissipative quantum maps. We also demonstrate the characteristics of competition between combined coherent and dissipative non-equilibrium evolution. This opens the door for studying many-particle non-equilibrium physics and associated dynamical phase transitions with no immediate counterpart in equilibrium condensed matter systems. An error detection and reduction toolbox that facilitates the faithful quantum simulation of larger systems is developed as a first step in this direction.
View original: http://arxiv.org/abs/1212.2418

No comments:

Post a Comment