Tuesday, February 5, 2013

1302.0553 (Xia-Ji Liu et al.)

Inhomogeneous Fulde-Ferrell superfluidity in spin-orbit coupled atomic
Fermi gases
   [PDF]

Xia-Ji Liu, Hui Hu
Inhomogeneous superfluidity lies at the heart of many intriguing phenomena in quantum physics. It is believed to play a central role in unconventional organic or heavy-fermion superconductors, chiral quark matter, and neutron star glitches. However, so far even the simplest form of inhomogeneous superfluidity, the Fulde-Ferrell (FF) pairing state with a single centre-of-mass momentum, is not conclusively observed due to the intrinsic complexibility of any realistic Fermi systems in nature. Here we theoretically predict that the controlled setting of ultracold fermionic atoms with synthetic spin-orbit coupling induced by a two-photon Raman process, demonstrated recently in cold-atom laboratories, provides a promising route to realize the long-sought FF superfluidity. At experimentally accessible low temperatures (i.e., $0.05T_{F}$, where $T_{F}$ is the Fermi temperature), the FF superfluid state dominates the phase diagram, in sharp contrast to the conventional case without spin-orbit coupling. We show that the finite centre-of-mass momentum carried by Cooper pairs is directly measurable via momentum-resolved radio-frequency spectroscopy. Our work opens the way to direct observation and characterization of inhomogeneous superfluidity.
View original: http://arxiv.org/abs/1302.0553

No comments:

Post a Comment