K. E. Wilson, E. C. Samson, Z. L. Newman, T. W. Neely, B. P. Anderson
Bose-Einstein condensates of dilute gases are well-suited for investigations of vortex dynamics and turbulence in quantum fluids, yet there has been little experimental research into the approaches that may be most promising for generating states of two-dimensional turbulence in these systems. Here we give an overview of techniques for generating the large and disordered vortex distributions associated with two-dimensional quantum turbulence. We focus on describing methods explored in our Bose-Einstein condensation laboratory, and discuss the suitability of these methods for studying various aspects of two-dimensional quantum turbulence. We also summarize some of the open questions regarding our own understanding of these mechanisms of two-dimensional quantum turbulence generation in condensates. We find that while these disordered distributions of vortices can be generated by a variety of techniques, further investigation is needed to identify methods for obtaining quasi-steady-state quantum turbulence in condensates.
View original:
http://arxiv.org/abs/1303.4764
No comments:
Post a Comment