Thursday, June 27, 2013

1306.6213 (W. B. Cardoso et al.)

Bright solitons from the nonpolynomial Schrödinger equation with
inhomogeneous defocusing nonlinearities

W. B. Cardoso, J. Zeng, A. T. Avelar, D. Bazeia, B. A. Malomed
Extending the recent work on models with spatially nonuniform nonlinearities, we study bright solitons generated by the nonpolynomial self-defocusing (SDF) nonlinearity in the framework of the one-dimensional (1D) Mu\~{n}oz-Mateo - Delgado (MM-D) equation (the 1D reduction of the Gross-Pitaevskii equation with the SDF nonlinearity), with the local strength of the nonlinearity growing at any rate faster than |x| at large values of coordinate x. We produce numerical solutions and analytical ones, obtained by means of the Thomas-Fermi approximation (TFA), for nodeless ground states, and for excited modes with 1, 2, 3, and 4 nodes, in two versions of the model, with the steep (exponential) and mild (algebraic) nonlinear-modulation profiles. In both cases, the ground states and the single-node ones are completely stable, while the stability of the higher-order modes depends on their norm (in the case of the algebraic modulation, they are fully unstable). Unstable states spontaneously evolve into their stable lower-order counterparts.
View original:

No comments:

Post a Comment