Tuesday, July 16, 2013

1307.3744 (Xia-Ji Liu et al.)

Topological Fulde-Ferrell superfluid in spin-orbit coupled atomic Fermi

Xia-Ji Liu, Hui Hu
We theoretically predict a new topological matter - topological inhomogeneous Fulde-Ferrell superfluid - in one-dimensional atomic Fermi gases with equal Rashba and Dresselhaus spin-orbit coupling near s-wave Feshbach resonances. The realization of such a spin-orbit coupled Fermi system has already been demonstrated recently by using a two-photon Raman process and the extra one-dimensional confinement is easy to achieve using a tight two-dimensional optical lattice. The topological Fulde-Ferrell superfluid phase is characterized by a nonzero center-of-mass momentum and a non-trivial Berry phase. By tuning the Rabi frequency and the detuning of Raman laser beams, we show that such an exotic topological phase occupies a significant part of parameter space and therefore it could be easily observed experimentally, by using, for example, momentum-resolved and spatially resolved radio-frequency spectroscopy.
View original: http://arxiv.org/abs/1307.3744

No comments:

Post a Comment