Tuesday, May 22, 2012

1205.4536 (Rémi Desbuquois et al.)

Superfluid behaviour of a two-dimensional Bose gas    [PDF]

Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Léonard, Jérôme Beugnon, Christof Weitenberg, Jean Dalibard
Two-dimensional (2D) systems play a special role in many-body physics. Because of thermal fluctuations, they cannot undergo a conventional phase transition associated to the breaking of a continuous symmetry. Nevertheless they may exhibit a phase transition to a state with quasi-long range order via the Berezinskii-Kosterlitz-Thouless (BKT) mechanism. A paradigm example is the 2D Bose fluid, such as a liquid helium film, which cannot Bose-condense at non-zero temperature although it becomes superfluid above a critical phase space density. Ultracold atomic gases constitute versatile systems in which the 2D quasi-long range coherence and the microscopic nature of the BKT transition were recently explored. However, a direct observation of superfluidity in terms of frictionless flow is still missing for these systems. Here we probe the superfluidity of a 2D trapped Bose gas with a moving obstacle formed by a micron-sized laser beam. We find a dramatic variation of the response of the fluid, depending on its degree of degeneracy at the obstacle location. In particular we do not observe any significant heating in the central, highly degenerate region if the velocity of the obstacle is below a critical value.
View original: http://arxiv.org/abs/1205.4536

No comments:

Post a Comment